

Determination of High Frequency Earth Orientation Parameters by GNSS

Dzana Horozovic, Robert Weber

University of Technology, Vienna Department for Geodesy and Geoinformation

GEOWEB, Mostar, October 16th, 2017

Which effects can alter the angular velocity? (conservation of angular momentum)

Tidal effects (tidal brake,solid earth tides,...)

external forces

Variation of moments of inertia (wind, pressure, ocean currents)

internal forces

Characteristics of the Solution	
Campaign	Erpnet
Software	Bernese 5.2
Processing Period	Jan - May 2014 (doy002 - doy143) and ongoing
Type of Solution	1-Day/3-Day Solution
Observations	Phase and Code
A priori Orbits and EOP	IGS Final Products
Station Position and Station Velocities	ITRF2008
Absolute Antenna Model	IGS08
Station Network	174 Sites (NNR -> 81 stations)
Processing Mode	Double Differences
Ambiguity Resolution	QIF & WL/NL
Earth's Gravity	EGM2008_SMALL
Planetary Ephemerides	DE405
aprioriSolar Radiation Pressure	C061001 (Code Model COD9801, Springer et al. 98
Subdaily Pole Model	IERS2010XY (based on Ray 1994, XY - values)
Nutation Model	IAU2000R06
Solid Earth Tide Model	TIDE2000 (IERS2000)
Ocean Tides	OT_FES2004
Site - specific Correction for Ocean Tidal Los	ading FES2004

GNSS Integrated LOD + Nutation

According to [Rothacher 1999] the relation between LOD and nutation rates (old notation) and the first time derivatives of the orbital elements: (ascending node, inclination i and argument of latitude u_0 reads:

$$-LOD = -\left(\frac{\bullet}{\Omega} + \cos i \cdot \dot{u}_0\right)/\rho$$
$$\Delta \dot{\varepsilon} = \cos \Omega \cdot \dot{i} + \sin i \sin \Omega \cdot \dot{u}_0$$
$$\Delta \dot{\psi} \cdot \sin \varepsilon_0 = -\sin \Omega \cdot \dot{i} + \sin i \cos \Omega \cdot \dot{u}_0$$

From these equations we learn that the determination of LOD and the nutation rates with GNSS is possible as long as the orbital perturbations e.g. caused predominately by radiation pressure, are modelled sufficiently accurate.

Geophysical excitation functions

Atmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM) for 2012, 2014,2015 data provided by Michael Schindelegger.

AAM Data

3-hourly AAM values were determined from the "assimilated state on pressure" stream of NASA's GEOS-5 Modern-Era Reanalysis for Research and Applications (MERRA).

OAM Data

3-hourly OAM values were determined from a barotropic ocean model that is a derivative of the model described in Schindelegger et al. (2016). It is forced by 3-hourly pressure and wind stress fields from the MERRA atmosphere and time steps the shallow water equations on a 30-minute grid.

GeodeticExcitation Functions

The **usual method** of studying the perturbations of polar motion begins with computation of the excitation function from geodetic observations of x, y pole coordinates using the following formulas [WILSON 1985, BRZEZIŃSKI 1992]

$$\chi(t)^{GEOD} = \frac{ie^{\frac{-i\pi\Delta T}{T_{CW}}}}{\sigma_{CW}\Delta T} \left[p\left(t + \frac{\Delta T}{2}\right) - e^{i\sigma_{CW}\Delta T} p\left(t - \frac{\Delta T}{2}\right) \right]$$
(1a)
$$\chi(t)^{GEOD} = \dot{p}(t) + i\frac{p(t)}{\sigma_c}$$
or if a derivative is available (1b)

where the complex-valued excitation function $\chi(t) = \chi_1(t) + i\chi_2(t)$ and the complex-valued polar motion $p(t) = p_1(t) - ip_2(t)$, with subscripts 1 and 2 corresponding to the x and y components, respectively.

The minus sign expresses the present convention according to which the y component of polar motion is measured positively toward the 90° o W longitude, while the y axis of the TRS is oriented along the 90° o E longitude. The complex - valued frequency of the Chandler wobble is described by $\sigma_{cw} = 2\pi/T_{cw}(1 + i/2Q)$. Here T_{cw} is the period and Q is the damping factors of the Chandler wobble.

UT1-UTC or LOD variations are linked to the axial component of the excitation function by the linear formula.

(1c)

$$\chi_3^{GEOD} = -\frac{\Delta LOD}{86400s} + const$$

Spectra GEOD vs AAM + OAM (polar motion)

$$FTBPF Spectra \chi_1^{+i}\chi_2 AAM+OAM 2014 FTBPF Spectra \chi_1^{+i}\chi_2 AAM+OAM 2014$$

$$ftap FTBPF Spectra \chi_1^{+i}\chi_2 AAM+OAM 2014 FTBPF Spectra \chi_1^{+i}\chi_2 AAM+OAM 2014$$

$$ftap FTBPF Spectra \chi_1^{+i}\chi_2, GEOD 2014, 3h$$

$$FTBPF Spectra \chi_1^{+i}\chi_2, GEOD 2014, 3h$$

$$FTBPF Spectra \chi_1^{+i}\chi_2, GEOD 2014, 3h$$

$$ftap FSpectra \chi_1^{+i}\chi_2, GEOD \chi_2^{+i}\chi_2^{+$$

Alternative method to calculate the geodetic excitation function and AAM+OAM by using a transfer function method (2 resonances)

The equations below describing the transfer of polar motion to excitation of polar motion comprise of two parts which are the transfer functions of the matter (pressure, ocean bottom pressure) term Tp an motion(winds , ocean currents) Tm term.

$$sp(\sigma) = T_{p}(\sigma)s\chi^{p} + T_{m}s\chi^{m}(\sigma)$$
$$T_{p} = \sigma_{c}\left(\frac{1}{\sigma_{c}-\sigma} + \frac{a_{p}}{\sigma_{f}-\sigma}\right), T_{m} = \sigma_{c}\left(\frac{1}{\sigma_{c}-\sigma} + \frac{a_{m}}{\sigma_{f}-\sigma}\right)$$
(3)

Where sp(σ) is the polar motion spectrum, s χ^p s χ^m are spectra of the merged atmospheric plus oceanic excitation functions for matter and motion term, respectively, σ denotes the angular frequency, $\sigma_{f\widetilde{=}}-\Omega(1+1/430days)$ the observed value of the Free Core Nutation (FCN) angular frequency of resonance, σ_c = $\Omega/433$ days is the observed dissipation less value of the Chandler wobble resonance, Ω =7292115×10⁻¹¹rad/sec is the mean angular velocity of the Earth's rotation, and ap=9.2×10⁻², am=5.5×10⁻⁴ are dimensionless constants.

- Analyses show considerable variability and a number of peaks in the spectral range below 12h.
- It is necessary to note that the amplitudes of spectra obtained using the transfer function **are still about one order smaller** than the spectra computed from the x and y component determined from the GNSS observations. The known geophysical excitations are much too small to explain the estimated ultra-rapid ERP variation amplitudes derived from GNSS as well as from VLBI data.

RMS/Parameter	GPS	GPS&Galileo	
RMS XP [arcsec]	0.00004	0.00004	
RMS YP [arcsec]	0.00004	0.00004	
RMS UT1-UTC [s]	0.000003	0.000002	
RMS Delta Epsilon [arcsec]	0.00005	0.00005	
RMS Delta Psi [arcsec]	0.00005	0.00005	
RMS LOD [ms/D]	0.0089	0.0070	-

		GN	S S-E	OPu		DD	04-Diu	rnal-		TU		CBK >		H.				GN	ISS-	EOP¤		Tida	4-Diurna I-Wayes	-	TU		CBK -> H		
1		1010				nu	arvva	1621				•	1	-		1													_
		j 1	2 1	•			T	Lires	ultsa		- II	RS-coef	ficients	n n		Tide		ar	ume	nte		UT	12	LO	Dz	UI	1=	LO	n D¤
Tid	e: vi	1	rgun I'n	F		sin	X×	151	sinv	COST	sing	COST	sing	COST		4	γ¤	1¤	ľ¤	F¤ D	×Ω×	sin⊭	COSE	sin¤	COSH	sin¤	COSE	sin¤	C05
	91 14	-13	01	-28	2= -2#	0,	3#	5,61	-5,6⊧	0,31	0¢	0,9:	-0,9#	-0,1# #		94	12	-13	01	-24 -2	a -2a	-1,03#	-0,14#	-0,75#	5,32×	0,40=	-0,08=	-0,410	-2,0
	# 1#	-2#	10	-2#	0: -1:	1,	SR	-1,0:	1,00	1,8#	0,18	0,61	-0,6#	0,188		2013	18	-26	01	-29 0	8 -18 8 -78	1.508	-0,168	-0,859	-1,516	1.035	-0,058	-1.698	-1,0
20	15 18	-23	101	-28	01 -28	9,	38	-5,18	5,18	9,31	0,31	3,48	-3,48	0,384		*	18	0=	01	-2# -2	# -1#	0,29#	-0,10#	-0,54#	-1,56=	0,22⊧	-0,07#	-0,39×	-1,2
0	10 10	01	01	-28	28 -28	-0	40	-3,81	3,80	-0,51	0,51	4,21	-4,10	0,50 #		σili	18	0=	01	-2# -2	# -2#	1,54#	-0,54#	-2,90#	-8,34	1,19⊧	-0,39#	-2,09¤	-6,4
	# 1#	-1=	01	-2¤	0= -1=	1,	7#	6,6:	-6,6=	1,7=	1,2⊧	5*	-5#	1,2# =		× Our	1#	-18	10	-24 0	# -1#	0,73#	-0,601	-3,38#	-4,11:	0,97	-0,47#	-2,66#	-5,4
Q	18 10	-18	10	-211	0: -2#	9,	0# 3	15,01	-35,0=	9,0#	6,24	26,31	-26,38	6,24 4		Q25	10	-2.5	10	-28 0	R -28	3,868	-5,188	-17,840	-21,688	5,128	-2,508	-14,028	-28,7
RO	13 10	28	01	-28	21 .28	1	18	-0,21	1.05	1.1=	1.34	0,91	-0,98	1.38 4		ROII	18	18	10	-28 -2	8 -28	1,99#	-0,60#	-3,40±	-11,20	0,918	-0,478	-2,68#	-5,1
	8 18	02	01	-211	02 08	-0,	4#	-0,81	0,81	-0,41	-0,31	-0,81	0,8#	-0,30 #		×	18	0=	01	-2# 0	# 0#	-0,10#	0,08#	0,44×	0,55	-0,091	0,07#	0,41#	0,5
	# 1#	0=	۹0	-2#	0⊧ -1¤	11,	9× 3	14,8=	-24,8=	11,9⊧	9,2⊧	25,1:	-25,1#	9,24 =			1#	0=	0:	-2# 0	# -1#	3,21#	-2,64#	-15,39#	-18,76*	3,03#	-2,28#	-13,31#	-17,6
0	18 10	0:	10	-28	0= -2#	63,	28 13	0.91	131,61	63,2#	48,8¢	132,9#	-132,9#	48,8##		013	18	0=	01	-2# 0	# -2#	17,02#	-13,97#	-81,55#	-99,45*	16,02#	-12,07#	-70,478	-93,5
То	15 18	0:	01	OR ·	21 08	-0,	38	5.51	-5.50	-0.35	-0.75	-1.73	1.78	-0.78 4		Tous	10	-25	01	00 -2		-0.728	0,058	1.628	4.215	-0.191	0.150	0,468	1.1
	# 1#	-18	01	-21	20 -20	-4,	6#	3,41	-3,41	-4,61	-0,40	-0,91	0,9#	-0,40 1		D	18	-11	0:	-20 2	a -2a	0,248	0,52#	3,128	-1,45s	-0,08#	0,07#	0,45#	0,5
SNI	# 1#	18	01	-2#	0= -1=	0,	4×	0,91	-0,9⊧	0,4=	-0,3⊧	-0,61	0,6#	-0,3##	12 II	8	18	1:	0:	-2# 0	H -1H	-0,07#	0,10#	0,61#	0,45#	-0,06#	0,05#	0,31#	0,3
8 1	1 10	28	10	-2#	0: -28	2,	18 74 1	4,75	-4,75	2,10	-1,60	-3,51	3,51	-1,68 8	NO1		1#	13	03	-2# 0	# -2#	-0,38#	0,53#	3,23#	2,29	-0,31	0,27#	1,65#	1,8
2	8 18	-18	0:	0H	00 -18	1	28	2.6	-2.61	1.20	-0.91	-1.98	1.98	-0.98 #	100	3115	18	-13	01	0 10	R OH	-1,068	1,478	8,948	6,438	-0,861	0,758	4,568	5,2
N X	10 10	18	10	00 -	2: 0:	11,	211	7,41	-7,41	11,2#	-0,91	-1,81	1,8#	-0,908	181	718	11	18	Or Or	00 -2	n On	0.628	-0.77m	4 70#	-3.81#	-0,174	0,159	0,910	1,0
1 7	18 18	0#	-11:	-2¤	21 -21	1,	8#	2,81	-2,8=	1,8⊧	1,51	38	-3#	1,5# =	4	713	18	0:	-18	-28 2	# -2#	0,48#	-0,37#	-2,30#	-3,02#	0,31#	-0,19#	-1,18#	-1,9
ž p	# 1#	0:	10	-2#	2: -10	-0,	38	-0,51	0,50	-0,3#	-0,3¢	-0,65	0,68	-0,38 9	TWO IS	a a	18	0=	10	-2# 2	# -1#	-0,09#	0,07#	0,43#	0,59=	-0,061	0,03#	0,22#	0,3
5 s	15 18	0=	-11	0x	0= 0=	-0,	78	-1,1:	1,1:	-0,7=	-0,61	-1,23	1,2#	-0,611	100	Pit	18	0=	01	-21 2	# -2#	5,43#	-3,98#	-24,97#	-34,048	5,51	-3,10#	-19,408	-34,5
E	# 18	01	10	00	0: 10	2,1	41	2,81	-2,8=	2,18	1,51	31	-3#	1,50 %	ia ia	311	18	05	-15	OH O	A UA	-0,138	0,098	-1.096	-2.242	-0,135	-0.178	1.078	-2.1
K	15 18	0=	01	0×	0= 0=	-110,	98 -14	14,61	144,6>	-110,9⊧	-77,5=	-151,7:	151,7#	-77,5##		K13	18	0=	01	0# 0	# 0#	-18,10#	8,21#	51.72#	114.00=	-17.62*	8.55#	53,86#	111.0
	8 18	02	01	08	00 -10	-15,	28 -3 28	0.42	19,60	-15,18	-10,55	-20,61	20,68	0.288			12	0:	10	0 = 0	n -11	-2,46#	1,118	7,018	15,48=	-2,391	1,16#	7,30#	15,0
¥	10 10	0=	11	0H	0= 0#	-0,	SH	1,2:	1,2=	-0,8=	-0,61	-1,23	1,2#	-0,6# =		8	18	0#	0:	0# 0	# -2#	0,05#	-0,02#	-0,15#	-0,34:	0,05#	-0,03#	-0,16#	-0,3
φ	10 10	01	30	2# -	20 20	-1,	41	-2,01	2,00	-1,40	-1,10	-2,11	2,1#	-1,10 #		W10	18	0:	11	0 # 0	# 0#	-0,42#	-0,41#	-2,58#	2,661	-0,14:	0,06#	0,418	0,9
TT	12 18	-13	10	01	21 01	-9,	6H -1	3,91	13,9:	-9,63	-0,7=	-1,43	1,4#	-0,7##		TTil	18	-12	015	08 2	× 24	0,838	-0.598	-3,868	-4.561	-0.291	0,118	0,708	1,6
	8 18	13	01	01	0: -18	0,	08	0.21	-0,81	0,02	-0,71	-7,31	1,48	-0,7##		Jis	18	18	01	0# 0	# 0#	-1,30#	-0,36#	-2,37#	8,50#	-1,61#	0,19#	1,22#	10,5
SO	18 18	0:	01	0R	20 00	8,	0# -1	10,0:	10,0=	8,0=	-0,41	-1,1:	1,18	-0,4##			10	18	01	0 0	a -1a	-0,26#	-0,07#	-0,47#	1,69#	-0,32#	0,04#	0,24#	2,0
	# 1#	28	10	0#	0: 0:	-2,	0#	0,31	-0,3±	-2,00	-0,21	-0,51	0,5#	-0,28 8		SO13	10	0:	10	0# 2	n On	0,76#	-0,16#	-1,118	-5,11#	-0,41#	-0,01#	-0,04#	2,7
00	15 15	0:	10	28	01 24	-13,	18	2,18	-2,18	-13,0=	-1,18	-3,43	3,4#	-1,18 0		001*	18	28	01	28 0	8 OH	-0,178	-0,118	-0,728	1,14:	-0,211	-0,01#	-0,03#	1,4
	8 18	01	01	28	0: 0:	-1	82	0.31	-0.31	-1.81	-0.11	-0,51	0,5#	-0.188		8	18	01	01	24 0	H 1H	-0.73#	-0.46#	-3.13#	4,95>	-0.92	-0.02#	-0.16#	6.2
v	10 10	18	10	214	0= 2=	1,	S#	7,41	-7,48	1,5#	0#	-0,6:	0,6#	0 # #		i i	1#	0=	01	2# 0	H 0H	-0,15#	-0,10#	-0,65#	1,03#	-0,191	0,00#	-0,03#	1,3
	10 10	11	10	211	Oz 10	1,	0#	4,78	-4,71	1,02	50	-0,41	0,4#	00 8		VIR	18	11	01	28 0	# 2#	-0,18#	0,78#	5,43#	1,26#	-0,40#	-0,02#	-0,17#	2,7
• Та	ble-3:-F	olar-	Moti	on x _p	and-y,	·-·Cor	nparis	on-GN	SS-IEI	R S2010-	of-coef	icients o	if-			"1	14	18	10	20 0	8 18	-0,114	0,501	3,48#	0,80#	-0,251	-0,02#	-0,118	1,7
sin(arg	ument	·and·	cos(argur	nent)-o	f-diurr	al-vari	CMST	caused	-by-ocea	in-tides	. The uni	ts-are-		• Ta	ble-5-:-G	NSS-	UT1-a	ind•L	OD 0	Comp	rison of	-coefficie	ents-of-si	n(argum	ent)-and-	cos(argu	ment).	
					ha	-, r de		5	- MI						of	ournal-v	ariati	ons.c	ause	u-by-o	ceand	ues. th	e-units-a	re·μas;·γ	uenotes	GMS1+	#1		
						1		-	l.e.c		. т.	-		I D -			0												
L/	nr t	ne	2 (mn	let	e t	an	IPS	SPA	16	chr	nca	IRP	nor	гоо	1 14	1											

$$\begin{array}{l} \hline \textbf{GNSS Nutation} \\ \hline \textbf{According to [Rothacher 1999] the relation between LOD and nutation rates (old notation) and the first time derivatives of the orbital elements: (ascending node, inclination i and argument of latitude u_o reads:
$$-LOD = -\left(\hat{\Omega} + \cos i \cdot \dot{u}_0 \right) / \rho \\ \Delta \dot{\varepsilon} = \cos \Omega \cdot \dot{i} + \sin i \sin \Omega \cdot \dot{u}_0 \\ \Delta \dot{\psi} \cdot \sin \varepsilon_0 = -\sin \Omega \cdot \dot{i} + \sin i \cos \Omega \cdot \dot{u}_0 \\ \hline \textbf{From these equations we learn that the determination of LOD and the nutation rates with GNSS is possible as long as the orbital perturbations e.g. caused predominately by radiation pressure, are modelled sufficiently accurate. \\ \hline \end{tabular}$$$$

Characteristics of the Solution	
Campaign	Erpnet
Software	Bernese 5.2
Processing Period	Jan - May 2014 (doy002 - doy143) and ongoin
Type of Solution	1-Day/3-Day Solution
Observations	Phase and Code
A priori Orbits and EOP	IGS Final Products
Station Position and Station Velocities	ITRF2008
Absolute Antenna Model	IGS08
Station Network	174 Sites (NNR -> 81 stations)
Processing Mode	Double Differences
Ambiguity Resolution	QIF & WL/NL
Earth's Gravity	EGM2008_SMALL
Planetary Ephemerides	DE405
aprioriSolar Radiation Pressure	C061001 (Code Model COD9801, Springer et a
Subdaily Pole Model	IERS2010XY (based on Ray 1994, XY - values
Nutation Model	IAU2000R06
Solid Earth Tide Model	TIDE2000 (IERS2000)
Ocean Tides	OT FES2004
Site - specific Correction for Ocean Tida	
Loading	FES2004

14.09.2016

GNSS-EOP FR Meeting

GNSS vs VLBI-Conclusions The phase diagrams of the (x-iy) component computed from the VLBI and the GNSS data are pretty consistent in the case of the amplitudes (except the prograde and the retrograde 6 hr and the retrograde 12 hr). However the phases are quite different, especially for diurnal prograde band. Oscillations of the excitation functions determined from the GNSS observations dominate spectra in the spectral range up to 10 hours while those computed from the VLBI became larger below 4 hours. 37 22.11.2016 **GNSS-EOP – GSAC Presentation**

<section-header><section-header><text><text><text><text><list-item><list-item><list-item>

