Introduction to Physical Geodesy

Huaan Fan

Royal Institute of Technology (KTH), Stockholm, Sweden

GEOWEB training course on Modern Geodetic Concepts
University of Mostar, Bosnia and Herzegovina
October 16-20, 2017

Outline

® What and why ?
® Basic concepts

v’ Gravitation, rotation, gravity, potential functions
v’ g-measurements: principles, absolute/relative
v' Gravity field, normal field, anomalous field

® Stokes’ classic theory

v’ Geodetic boundary value problems
v Stokes’ formula, Vening-Meinesz’ formula

Non-classic theories

v’ Gravity reduction. Molodenskii’. Bjerhammar. Collocation
v' GGMs, modification of Stokes’ formulas, satellite gravimetry




Physical Geodesy

® Measure the magnitude of the earth’s gravity

acceleration on the ground — gravimetry

® Determine the gravity field of the earth by different
types of measurements

® One of the three scientific tasks of geodesy

v'Figure of the earth
v'Gravity field of the earth
v'Geodynamic changes

® Use gravity field information for geodetic purposes and

for other scientific research

Why gravity field ?

® To define geodetic reference systems, in particular the
geoid and the height systems

® To convert between GNSS-derived ellipsoidla heights and
levelled heights above the sea level
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ellipsoidal height

I =

orthometric height (height above Mean Sea Level)
N: geoidal height

Why gravity field ?

® To define geodetic reference systems, in particular the
geoid and height systems

® For convesion between GNSS-derived ellipsoidla heights
and levelled heights above the sea level

® For determination of precise orbits of artificial satellites

® For studies of the earth system: the crust, the mantle,

the oceans and the atmosphere — global changes




Basic equations of ocean circulation

ar=9-p(d, A1)
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e p, g, p denote pressure, local gravity and ocean density, respectively.

e ¢, )\ denote latitude and longitude and

e h denotes the sea surface elevation above the geoid.

— The geoid is needed to model global ocean circulations

Gravitation, rotation & gravity

z ﬁ Gravitational force
- Centrifugal force
g2 } ;

or: rotational force
7 Gravity force
— -, =
g =91+ g2
5 Y
=179l
g=1lyg —> to be measured !




Units of gravity (acceleration)

g=17l

9.8 m/s? present accuracy

!

g ~ 9.81 234 567 m/s?

1 Gal =1 cm/s*| = 1000 mGal = 1000 000 pGal

N g ~ 980 Gal
~ 980 000 mGal
~ 980 000 000 uGal
~ 10% yGal — ppb

Force vectors vs potential functions

el
a force vector is o
the gradiel_'mt of 7 = grad(W) = Ba_‘;V g=|7|= AW
the potential dn
function ow

o= () (-G

Gravitational potential
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N
T =01+% W=V+Q

" Rotational
Gravity potential or Geopotential potential




Equipotential surfaces

W(z,y,2) = constant C

—> an equipotential function, or: an equipotential surface

That equipotential surface which coincides with the
Mean Sea Level (MSL) and extends under the
continents is called the geoid

dx
8—de+aﬂdy+a—wdz:?- ( dy ) =0

Ox dy 0z

Gravity vector is orthogonal to the equipotential surface !

Trend in gravity variations

® Gravity changes from place to place

® Gravity increases from equator toward Poles

» longer distance to geocenter at equator
» centrifual force decreases
> negative effect of centrifugal force decreases

® Gravity varies irregularly /ocally due to mass variations

® Other factors influencing gravity

> earthquake, crustal motion, mass movement inside
> effect of the Sun and Moon. Sea level change.




Gravity measurements

e Types of measurements
v Absolute gravity measurements: g ~9.8
v Relative gravity measurements: g2-gi

e Types of methods
v" Dynamic methods: observing motions
v/ Static methods: observing a state of equilibrium

e Practical implementation
v' National gravity network (— reference system),
measured by absolute and relative gravimeters
v Detail gravity survey, using relative gravimeters

Measuring gravity using a pendulum

Moment of inertia of
point mass Mwrt axis ¢

Jr=m r2
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Equation of a pendulum
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2 14
T="C o=
g g
2
3 g_47rl
T2
mr _6 mye _6 mg_\/(me)Q (mT)ZN s
— 1 — 1 — A= — 4(—) ~224-10
T o l 0 g 1 T T

(or my ~ 2.2 mGal)




Absolute gravity measurement

Measure distance and time traveled by a
falling body

~o

(photography time unit =1/20 s,
distance unit=12mm)

= © &

® © © o

1
h=hg+ v t+§gzt2
hi, ho, hg for three time epochs t1, to, 3

N 282/At2 . Sl/Atl
T Aty - Ay

sy=hy —h1, sa=h3—h

Aty =15 — by, Ma=1s—t

Absolute gravimeter Lacoste-FG5

I e Measure distance and time
traveled by a falling body
e use laser interferometry method

® The instrument is run from a PC

”n

with special software “g

e Measure during at least 24 hours.
48 hours or more for best result

e Only for indoor measurements
e Demands a flat surface

e demounted after measuring and
stored in large and heavy boxes.




Swedish FG5 in Gradac

Measuring gravity using a spring

NSSS NS NN N\ k(s—so):m-g
k
g2 — g1 = E(SZ - 81)
S, =
Zero drift correction:
d= g1 — 9o
t —to
¥
v=d- (t — to)
mg
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Relative gravimeters

Worden LaCost-Romberg

® CHAMP - CHAIllenging Minisatellite Payload

v HL-SST, German project launched in July 2000

GRACE - Gravity Receovery And Climate Experiment

v LL-SST, US-German project launched in March 2002

v two satellites at 250 km altitude, about 200km away from each other

v

relative velocities measured with accuracy of about 0.001 mm/s

® GOCE - Gravity field and steady-state Ocean Circulation Explorer
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“Variational approach” to determine W

W=V+Q

If earth rotation velocity is known, € can be computed from
positional coordinates. The classical task of physical geodesy

is to determine V.
From ground measurements g, it is very difficult or
impossible to detemrine V.

Create a theoretical gravity field very close to the real gravity
of the earth. This theoretical field has gravitational potential

U and gravity y which can be computed.
It is possible or easier to determine V- U from g- y

Normal & anomalous gravity fields

¢ Definition of the normal gravity field

v' 4 assumptions to define the normal field
v' 4 defining/derived constants of GRS 80 (WGS 84)

v" Normal gravity formulas

e Anomalous gravity field

v' Quantities of the anomalous field: T, N, ......

v Relationship between T and other quantities

v' Bruns’ theorem Derive !
v

Gravimetric boundary value condition Derive !
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Normal gravity field of the earth

e The total mass M of the reference ellipsoid (an ellipsoid of
revolution) is equal to the total mass of the earth

e The ellipsoid rotates around its minor axis at same angular
velocity w as the earth

- Ellipsoidal surface is an equipotential surface with potential
Uo equal to the geopotential Wo on the geoid

- Difference between polar/equatorial moment of inertia equal
to that of the earth

Normal Gravity Field

e Computation of the normal gravity field

- 4 defining constants needed: a,GM, &, w
(or: a, GM, f,0)

- Derived constants: b, f, e, e’, m, k, ......
- Normal gravity formulas. Mean normal gravity

e Existing normal gravity fields
- GRS 1930 (a, f, Ye, w)
- GRS 1980 (a, GM, 12, w)
- WGS 84 (G873) (a, f, GM, w)

13



S, ..
gt Defining constants

Table 3.4: Defining constants of the Geodetic Reference System 1930

Notation Constant | Unit Numerical value
a semi-major axis m 6 378 388.000

f flattening 1/297.000

Ve equatorial gravity | Gal 978.049 000

w angular velocity | s~! | 0.729 21151 -10~%

Table 3.5: Defining constants of the Geodetic Reference System 1980

Notation Constant Unit Numerical value

a semi-major axis m 6 378 137.000

GM Product of G and total mass M m3s~2 0.398 6005 - 10°
T—A

Jo dynamic form factor (/MT 0.001 082 63

w angular velocity g 0.729 211 51-10~*

o5

fKTH Derived constants of GRS 80
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e gl

Notation Constant Unit Value
b semi-minor axis metre 6 356 752.3141
f geometrical flattening ?/(;(5)33832?527 8212(; ?%11

e2 first eccentricity squared 0.006 694 380 023
e? second eccentricity squared sec™! 0.006 739 496 775
Uy normal potential on the ellipsoid | m? - sec™2 62 636 860.850
Yp normal gravity on the Poles Gal 983.218 636 85
Ve normal gravity on the equator Gal 978.032 677 15
. . . 0.005 302 440 112
f gravity flattening 1/188.592 417 552
k (by, — av.)/(av,) 0.001 931 851 353

0.003 449 786 003
m w*a?b/(GM) 1/289.873 052 743
Vas normal gravity at latitude 45° Gal 980.619 920 3
¥ global mean normal gravity Gal 979.764 465 6




Normal potential U

U=V'+9Q = +v/u?+ E?coscos A
y = Vu?+ E?cos fsin A\
z=usinf

1 1
0= EwQ(mQ _I_yZ) — §w2(u2 +E2)C082[3 E? —a? —p?
GM E 1 : 1,1
U(z,y,2) =U(u,p) = - tan ™! " + §w2a2;io(sm2ﬁ - 5) + §w2(u2 + E?)cos’ B
M E 1 T
UO :U(baﬂ) = GT an_1€+§w2a2

Normal gravity on the ellipsoid

N AN A Wi paCk
V= Ox oy 0z dn/

aYp sin? 8 + by, cos? 3 Y. cos® ¢ + by sin? ¢ B

1+ ksin® ¢

y

a VaZsin? B+ b2 cos? 8 a Va2 cos? ¢ + b2 sin ¢ ;

“V1-e2sin ¢

7. = normal gravity at the equator
7, = normal gravity at the poles

3 = the reduced latitude

¢ = the geodetic latitude

k= (b, —av.)/(ave)

1
vy, (14 f*sin? ¢ — Zf4 sin? 2¢)
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Normal gravity above ellipsoid. Clairaut’s theorem

378 2
a? h

2 5
7h=’y(¢,h):v—% 1+f+m+(—3f+§m)sin2d) h+

F :(ﬂyp_’ye)/ﬂ/e:f2+f4
fo==f+3m+1f2—Lfm+ Lm?
f4:—% 2—I—%fm

m:w2a2b/(GM)

f=(a-b)a

f+f= ?m —y Geometrical flattening f can be
2 determined from measurements of

a physical quantity, i.e. gravity.

Anomalous gravity field

e The real gravity field of the earth minus the normal
gravity field of the reference ellipsoid is called the
anomalous gravity field of the earth

e Anomalous gravity field can be described by
different quantities

e All these quantities describe the differences
between the real and the normal gravity field

e All these quantities are much smaller than the
original quantities. Thus spherical approximations
or linearizations are allowed

16



Anomalous quantities

e Disturbing potential T

_n- n! geoid Tp — Wp _ Up

Tp:(%"'Qp)_(V;;"”Qp):VP_Vp/
e Gravity disturbance

09p = 9p —

e Gravity anomaly

a euipsa,‘
Agy=gp—1,

Geoid height N: from Q to P along ellipsoidal normal at Q

Deflection of the vertical

e Gravity vector
cos ®cos A
G =—g| cos®sinA
sin @

e Components of the deflection
of the vertical

“[§]

p=0¢
A=A—n/cos¢

eq =&cosa+nsina
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Relations between different quantities

_n," geo:el

.

-l
A‘l
N
re nce
— Q& ellipso;
Bruns’ theorem —>

ou 10%U .,

Up=U, +8’N+53 IV e
oUu
~ U, + 8’N Ug—v, N

T,=W,-U,=U,-U,

= Uy~ U =7y M) =7

v T
Tq

Relations between different quantities

geoitl

| /
\

(T
N
re nce
/Q euipso,‘

LAY
9 =9 =T =\ ", on’

N _aWp 6U O(Wp -Up)
- or Or or
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Relations between different quantities

ar, o au,
A AR A
_ 0T, 9y,
o &
0 0 (GMY _ 2GM 2
or “or\ 2 ) 2 " r e
T, 2
Gravimetric boundary value condition —> |A¢ = “or i

Agy = gp—7,=

(%)~ (-5)

or

() ()

Relations between different quantities

_AN
As

ER

dN
ds

[

dN
Rd¢

_dN
dx
_dN
dy

dr
1 Rd¢
_dN__ Yo \ __dr__
R cos ¢pdA R cos ¢pdA

|
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Basic concepts: conclusion

If we can determine the disturbing
potential T,

all other quantities can be derived from T

Laplace’s equation

e in rectangular coordinates (x,y,2

o2V 9V 9V
AV)E -5+ -5+ -5 =0

T 922 ay? | 022
~

. . . _ V is called a
e in spherical coordinate(, 4, \)

harmonic
/1 function
r282—v+2ra—v+82—v —tanaa—v—l—Ly—v =0
Or? or 552 ¢ cos2p ONF
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Example — Reciprocal distance

(=VE@-2P+y—yP+(-2)?

o 2xz—-2") xz—2a

dxr 20
1
f(x7yvz)zz " ,
(E)’:uv—uv
o, 1ot w-o | v
ox ' 29ox 03

Reciprocal distance

9 1. £P-3-(y—vy)
AT

0 1 2 —-3-(z—2)?
52 = "

1 0?1 0% 1 0 1
2P =20 5@ 52

323 {@—P+ -y’ + (-2} 33

e =—m

— f(x,y,z)is a harmonic function
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The external gravitational potential V
is always a harmonic function

BVPs in potential theory

Vp = potential function at point P
S = surface of the attracting body
v = external space outside the attracting body
n = normal of S
fp = agiven function of point P residing on S
a, B = two given functions

1st boundary value problem - Dirichlet’s problem

given: A(V,) =0 for Pew
given: V, = f, forPe S
sought: V,, for Pew

22



BVPs in potential theory & geodesy

2nd boundary value problem - Neumann’s problem
given: A(V,) =0 for Pew

given: aal; = for Pe S
sought: V}, forPev+S
3rd boundary value problem - mixed problem
given: A(V,) =0 for Pew
given: aV, + 5%—: = s for Pe S
sought: V}, forPev+S

3rd geodetic boundary value problem - gravmetric BVP

Given: A(T) =0 inv
Given : —%—7; - %T =Ag on S
Sought : T =7 on S and in v

(Extended) Stokes’s formula

76,0 = 1o [ 80:0)- g(R,,X) - do(/ )

(o]

Sy =3 2t <§>n+1 Po(cos )

n—1\r
n=2

Rido-

2 2 B
sy =22 4+ B 5B 5B oy 35 cosyin LBV HL
14 r r2 r2 r2 o

{=+/r? + R? — 2rRcos
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Stokes’s formula

R TR = g [ 500 Ag(R#X) - do(el )
v RO - [ 5w g0t ) - dotf, )
gl amy ) Jo Ny

| Stokes’s formula |

Stokes’s function: | -
2n+1

() =8(r¥),p =) S — Palcost)

n=2

S(yp) = 1/ —GSin%—|—1—5cos1/1—3c0s1/)1n(sin%—I—sinzﬁ)
sin ¥ 2 2 2

2
2 1-1¢ 1-t 1-t

d)i = &min + (Z - %)A¢
Ai = Amin + (.7 - %)A)‘
Aij = ffw do =2-AX-sin 52 cos ¢,




Numerical integration

R = mean earth radius (~ 6371 km)

cosp;; = sing sing; +cos¢ cos @ cos(A — Aj)
/\J = Amin + (§ — ‘)A/\
Ay = ff do=2-AM\-sin A(p cos ¢;

~ = normal gravity on the reference ellipsoid

Ag;; = mean gravity anomaly for block o;;

1;; = spherical distance from the computation point (¢, A) to the block centre of o
Omins Amin = the minimum latitude and minimum longitude of the integration area
A, AX = block sizes, i.e. the latitude/longitude differences of a block

A;j= area of block 0 .

Truncation & numerical integration

(R ¢, )

- //s ) Ag(R, ¢/, X) - do(d/, X)

N:%/LOAgS(w)da 4MZZ// AgS() - doj

R R B
CEEE ] smswn-an =g S Y ns f]

Tij

:%ZZ{A%'SWU)AM‘}
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Gravity anomaly data file

e e e e e e e e e

O J OO WN
o
e

WWWWWwWwwwwwwwwww

15 5 -15.24 6' BY 10" MEAN GRAVITY ANOMALIES IN

15 15 -13.92 CENTRAL SWEDEN

15 25 -13.42

15 35 -12.90 Area: min/max latitude: 59/62 degree
15 45 -14.11 min/max longitude: 15/21 degree
15 55 -13.17 Total number of data: 1080

16 5 -11.12 Reference field: GRS 1980

16 15 -8.65 Unit of gravity anomalies: mGal

16 25 -6.98 File name: GRAV.DAT

16 35 -5.90

16 45 -6.03 All coordinates refer to the block centers
16 55 -8.26 Format (2I3,1X,413,F8.2)

17 5 -11.16

17 15 =-12.73 (H. Fan, Stockholm, 1990-02-19, 7:17pm)

17 25 -11.05

19 45 -7.33
19 55 -13.33
20 5 -16.33
20 15 -21.33
20 25 -27.33
20 35 -33.33
20 45 -35.33
20 55 -36.33

¥ KTH %

verenscae &
S onsT g
i gl

Non-classic theories

e Gravity reductions - classic theory does not fit the reality

e Molodenskii’s theory

e Bjerhammar’s methods
e Least squares collocation
e Global gravity field in spherical harmonic expansions

e Truncation of Stokes’ formula, combination of
terrestrial gravity data and global data sets

e Dedicated satellite gravity misisons for determination
of GGMs

26



Why gravity reduction ?

e Assumption in Stokes’s theory: the disturbing potential T is
harmonic on/outside the geoid. This requires that there are no
masses outside the geoid

e Objectives of gravity reduction:
v' remove masses outside the geoid
v compute gravity on the geoid from gravity
measurements made on the earth’s surface

e Gravity reduction causes the extermal gravity field of the
earth to change, indirect effects

e In geophysics/geology, one uses gravity reduction to remove
systematic effect of the topography

Free-air gravity reduction

Free-air = there is no mass between P and A

dg 1 8% .o 18 dg
ga=9rt ot orgm ™ Tyiggst T P oH

gp X ga+06F | Free-air correction |

bp = —g—;H ~ +0.3086 H ™" (mGal)

Agr=gpr =79 =94—"7¢ +0F

| Free-air gravity anomaly
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Bouguer gravity reduction

Topography is like a Bouguer plate (big cylinder)

B =2rGpy H = +0.1119 H ™'¢  (mGal)

gp=9ga+6p—B
0p=0p— B =0.3086 H — 01119 H = +0.1967 H ™" (mGal)

\

| Bouguer gravity correction |

Agp=gr =g =94— "¢+ 05

| Bouguer gravity anomaly

Figure 3.12: Bouguer gravity reduction

| (total) topographic correction: |

Vertical gravitational force at A by the total topography:

B cos 3 pg dv
6t_G///m 2 gp =ga+06r — 0
Standard density is used:
po = 2.67 g/cm**3 o =0dp — 0

|topographic reduction

Agr=gpr —v9=9a— g +or

| topographic gravity anomaly

28



Topographic correction in 2 steps

e Bouguer correction

e Terrain correction:
vertical gravitational force at A
by the extra masses above A and
mass deficit (air) below A

STy 7 r/ 71
,,,”,/// f, N
v

w,/’//,, e

Always postive !

e Total topographic correction =
= Bouguer correction + terrain

Topographic-isostatic reduction

= topographic gravity reduction using varying crustal
density calculated from isostatic theory with isostatic

comnensation

- G/// Cosﬂp dv |Topographic-isostatic reduction

61 = bp —0;

8 =0; — 50\
| Isostatic compensation

|Topographic-isostatic gravity anamo

@uicf

Agr=gp =Yg =94— g+ 01




Isostatic theory

e The earth’s surface layer consists of extra masses in the
mountains and mass deficit in the oceans

e The isostatic theory says that the masses somehow are kept
in balance everywhere

e Isostatic phenomena has been evidenced and accepted,
though there exist differing mathematical models to describe
this phenomena

e Development of isostacy helped to understand the visco-
elastic character of the earth’s upper mantle

Pratt-Hayford model

The model of “Baking bread”

) D
o D-py=(D+H)-p or P=Dyg o
’_ H
D-py=(D-H')-p'+H -p,
D
D-pn— H' -
or p/ _ Po - Puw
AL AES D—-H
4 compensation
furface Total topographic-isostatic correction
Figure 3.13: Isostatic model of Pratt-Hayford

& =6t — o5

D=100km = compensation depth

\| Isostatic compensatior
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p——

Airy-Heiskanen model

Isberg floating in the water

M Crust floating in the upper mantle

e level H-py=t-(pm = Po)

crust (8,) or t=—"  He4asH
Pm — Po
Moho Surface
/ — 4. —
mante (5,) H' - (pg— py) =t (P — Po)

or /=P "Pu groorgH

T=30km = crustal depth | Pm = Po

Other reduction methods

o Helmert condensation method: Topographic masses are
condensed into a surface layer on the geoid with density y :

p=p-H

Total mass of the earth is unchanged. But external gravity field
is changed, causing the indirect effect

¢ Rudzki reduction: the topographic mass element dm is
relocated as dm’ below the geoid:
2 R
r=" and dm' = —dm
T r

Geopotential on the geoid is unchanged. But external gravity field
is changed.

31



Direct and indicrect effects

e The topographic (and isostatic) effect on the gravity anomaly is
called the direct efffect

e Change in the geoid height due to the direct effect of the
topography is called the indirect effect

e The atmosphere of the earth behaves in a similar way as the
topography, thus causing both direct and indirect effects in
geoidal determination

Molodenskii’s theory

| Telluroid is defined by: |

earth Suf
A T Wia=Up

g tetturoid . =
2. gt Uy=hy |Separation: teIIuroid—surface:|

¢
W=, |Disturbing potential: |

Ty=Ws—-Uas

|Gravity anomaly: |

Aga=ga—7p

Ca=Wo—Wy=Ug—-Up= / v-dh=%, -H"

0O—P—B

32



Molodenskii’s gravity anomaly

Aga=ga—17p
YB =79 — 27" (%) : {1+f+m+ <—3f—|— gm) -sin%)} + 37, (%)2
a = equatorial radius
Ve = normal gravity on the equator
f = geometric flattening of the reference ellipsoid
m = “’é‘};b = 0.00344978600308 (for GRS 80)
o = geodetic latitude of P

H 5 Hy\?
Aga=ga—Y0+27.- <TA> . [l—i—f-}—m—I— (—3f—|—%m> ~sin2¢] -3, <—A>

a

Basic equations

TA:WA*UA:UB*UA:
10U

ou 9 ou
:UB—<UB+%C+5%C +"')~—%CZVBC

_Tu
VB

OW 4 dUp
Aga=ga=78=\"71" ) "\ "o

0Ty 0U, Uz _ OTa

= Ton on T ow T on VAT 7B

oT. 0 orT 10
'“__A‘F(VB"‘a_;,C‘l‘”')_WB%_—A"‘ i-TA

¢

oh h ' ygon
Ty 2
Agy = —8—A —=Ta
T r




Molodenskii’s solution

Ta=Y T =T+ 70 + TP +

=0
_ a4 2 _ TN 4 o)y o
Aga=-—% - =Ty (== 2 (W=
-dS R
e [[2F (= [[sw)6dr, Go= s
S ™' B 4

<<1>:%/L5(¢).Gl-da

hh(A +3yB )d

Discrete BVP of Bjerhammar

Given a finite set of discrete gravity measurements,

we look for an estimate of the disturbing potential

which satisfies the boundary value condition
at the discrete measurement points:

T, 2~
L _ZT=A i=1,2,3,- -
87'J 7"] g]’ .7 7535 an
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Bjerhammar’s method

Ag(rj, ¢, A) not harmonic
rj-Ag(rj,¢,\)  harmonic under spherical
approximation

|App|y Poisson’s integral on ;- Ag(r;, ¢, ) |

%erﬂammar
Sphere )
r - R;) - Ag )r=R,
rj- Ag(rjad)a // i do (d) /\)
(= \/rjz + R2 — 2r; Ry, cos )
R2( 7‘ - R?) Ag* Rb ’
. ’ 7 >\/
Bafryo ) = T [ SPEED) gy v

Bjerhammar’s solution

m;

<R2 2~ R?) // Ag( Rb’ A da(¢’,X)> i(T'Agf)
i=1

P drr;
Ag = A -Ag* Ry(r2 —RQ)A
nl nmom.1 Gji =
drr;
7”], ¢7 - // Agl T“ w]z do-l
T R ,
N(rj,¢,A) = i T’Y//O.Agi S (ris i) do
éj dS(r:. .. COS Qvj;
_ % / / gt Zz,wﬂ) do
™ JJo Vi sin o
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Least squares collocation

|Given a set of discrete measurements: |

gravity anomaly Ag; at n points (i = 1, 2, 3 - - n)

|We look for a linear estimate of the disturbing potential

Ag
j—\, :(041, g, -, an)' AgQ :aT'Ag
Agn
o Agy
0 (&%)} ’ Ag _ AQQ
_ =
Unknown cofficients an, Agn

to be determined

Error of the prediction

|A homogeneous, isotropic, averaging operator

1 27 % f 2
MO =53 | y [0 e,

p 2 pg=

|Global mean square error of the prediction |

m? =M (5127) =M ([aTAg - T,] [ozTAg - Tp]T> =a’'Cyya — 2Cpg0 +mk
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Variance-covariance matrices

|Variance matrix of the gravity anomaly: |

€11 Ci2 - Cipn
C C .- C
Cyg = M (AgAg™) = 21 22 . 2n » iy = M(AgiAg;)
Cnl  Cn2 Cnn

Covariance matrix between disturbing potential
and the gravity anomaly:

Crg=M (TPAQT) =(cp1 cp2 = Cpm)y Cpj = M (TpAg;)

Variance of the disturbing potential: |

mi = M ()

Least squares estimate

d 2
(;ZE) =207Cpy — 207, =0

—> ol =0p-C}

a9
T,=Cry- Ol - Ag

2 2 -1
mE:mTfCTngg-CgT
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Problems and forthcoming lectures

Global gravity field - Global gravitational models (GGM)

Truncation error in Stokes’ formula

Combination of ground measurements and GGMs

Effects of topography, atmosphere and ellipticity

Dedicated satellite gravity missions
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