

GNSS Satellite Time Systems

GPS- Time: TAI - 19 s

GLONASS Time : UTC + 3h

Galileo System Time : TAI – 19 s

Beidou Time: TAI – 33 s

- Time Scales
- Global Spatial Reference Systems
- Broadcast Frames
- Continental/ Regional Spatial Reference Systems
- Satellite specific Frame
- Sun-refered Frame

	Histor	ry of astro	metry
130 BC	Hipparchus	precession	50 asec/yr
1718	Halley	proper motions	1 asec/yr
1729	Bradley	annual aberration	20 asec
1730	Bradley	18.6 yr nutation	9 asec
1838	Bessel	parallax	~asec
1930s	Jansky, Reber	radio astronomy	
1960s	several groups	VLBI invented	
1970s		VLBI	sub asec
1980s	п		few masec
1990s	п		< masec
2000s	п		100 µasec
2010s	Gaia	optical astrometry	70 μasec for V _{mag} 18 quasar
2010s	ICRF3	VLBI	20-70 µasec

International Celestial Reference Frame

- ICRF is the realisation of the ICRS by positions of compact extragalactic radio sources
- IAU is the international governing body for the CRF
 - ICRF1 accepted as fundamental CRF effective 1 Jan 1998
 - ICRF2 accepted as fundamental CRF effective 1 Jan 2010
- Ongoing work towards ICRF3
 - IAU WG on ICRF3 (Chair: Chris Jacobs, JPL; Patrick Charlot)

Т	ransforr	nation	ı parar	neters	betwee	n ITRF	frames		
From	То	$T_1 \vec{T}_1 $ (cm) (cm/y)	$\begin{array}{c} T_2 \vec{T}_2 \\ (\text{cm}) \\ (\text{cm/y}) \end{array}$	$\begin{array}{c} T_3 T_3 \\ (\text{cm}) \\ (\text{cm/y}) \end{array}$	$\begin{array}{c} R_1 \dot{R_1} \\ (0.001^{"}) \\ (0.001^{"}/y) \end{array}$	$\begin{array}{c} R_2 \dot{R_2} \\ (0.001^{\prime\prime}) \\ (0.001^{\prime\prime}/y) \end{array}$	$\begin{array}{c} R_3 \dot{R_3} \\ (0.001^{''}) \\ (0.001^{''}/y) \end{array}$	$\begin{array}{c} D \dot{D} \\ (10^{-8}) \\ (10^{-8}/y) \end{array}$	t ₀
ITRF92	ITRF93	- 0.2 - 0.29	- 0.7 +0.04	- 0.7 +0.08	- 0.39 - 0.11	+0.80 - 0.19	- 0.96 +0.05	+0.12 0.0	1988
ITRF93	ITRF94	- 0.6 0.29	+0.5 - 0.04	+1.5 - 0.08	+0.39 +0.11	- 0.80 +0.19	+0.96 - 0.05	- 0.04 0.0	1988
ITRF94	ITRF96	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \end{array}$	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	1997
ITRF96	ITRF97	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	1997

 Table: Transformation parameters among ITRF frames for use with the 7/14-parameter Helmert model

rom	То	$\begin{array}{c} T_1 \dot{T_1} \\ \text{(cm)} \\ \text{(cm/y)} \end{array}$	$\begin{array}{c} T_2 \vec{T_2} \\ (\text{cm}) \\ (\text{cm/y}) \end{array}$	$\begin{array}{c} T_3 T_3 \\ \text{(cm)} \\ \text{(cm/y)} \end{array}$	$\begin{array}{c c} R_1 \vec{R_1} \\ (0.001^{"}) \\ (0.001^{"}/y) \end{array}$	$R_2 \vec{R}_2$ (0.001") (0.001"/y)	$R_3 \vec{R}_3 $ (0.001") (0.001"/y)	$D \dot{D} $ (10 ⁻⁸) (10 ⁻⁸ /y)	t ₀
TRF2000	ITRF2005	- 0.01 +0.02	+0.08 - 0.01	+0.58 +0.18	0.0 0.0	0.0 0.0	0.0 0.0	- 0.040 - 0.008	2000
TRF2005	ITRF2008	+0.05 - 0.03	+0.09 0.00	+0.47 0.00	0.0 0.0	0.0 0.0	0.0 0.0	- 0.094 0.0	2005
TRF2008	ITRF2014	-0.16 0.00	-0,19 0.00	-0.24 +0.01	0.0 0.0	0.0 0.0	0.0 0.0	+0.020 -0.030	2010
fable: Tra he <mark>7/14-p</mark>	nsformation arameter I	n parame Helmert	ters amoi model	ng ITRF	frames for u	ise with			

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		GL	OBAL	GEOC	ENTRI	C CO	ORDINA	ATE S'	YSTE	M
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	М п/	2 Из п системы	В систему	ΔХ, м	ΔY , м	ΔΖ, м	(<i>w</i> _X ,угл.с) ·10 ³	(<i>w</i> y, угл.с) ·10 ³	(<i>w</i> _Z , угл.с) ·10 ³	<i>m</i> ·10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	ПЗ-90.02	ПЗ-90.11	-0,373 ±0,027	+0,186 ±0,056	+0,202 ±0,033	-2,30 ±2,11	+3,54 ±0,87	-4,21 ±0, 82	-0,00 ±0, 004
	2	ITRF- 2008	ПЗ-90.11	-0,003 ±0,002	-0,001 ±0,002	+0,000 ±0,002	+0,019 ±0,072	-0,042 ±0,073	+0,002 ±0,090	$-0,00 \pm 0,00$ 3

EUREF/ EPN / ETRS /ETI	RF
HOME ORGANISATION - NETWORK & DATA - PRODUCTS & SERVICES - DOCUMENTATION - NEWS, LVENTS	& LINKS - Q
Welcome !	
<section-header><section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><text><list-item><list-item><list-item><text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></list-item></list-item></list-item></text></list-item></list-item></list-item></list-item></list-item></text></section-header></section-header></section-header>	<image/> <section-header></section-header>
EUREF Welcome Page http://w	ww.epncb.oma.be/

EUREF Perma	anent Network
ORGANISATION TRACKING NETWORK DATA & P reation, Management, Structure, elation to IGS, Projects, Guidelines, AQ Site maps, Site list, Proposed sites, Equipment & calibration, Site coordinates, Site log submission Data access, Analy Products, Time seri transformation, For	RODUCTS NEWS & MAILS FTP & WEB ACCESS sis centres, ies. ETR3591TRS News, Mails, Calendar, Papers, Workshops, Web site history Anonymous FTP, Web site index, Related links
TRACKING NETWORK	
STE MARC	Stre i ter
More wallable in pdf, ps and png formats.	More
PROPOSED SITES The EPN tracking network is permanently growing. Browse the list of candidate stations (including map and preliminary log files) and follow their inclusion status. More	EQUIPMENT AND CALIBRATION The names of the GPS receivers and antennae known to both the IGS and EUR as well as the calibration values of the antennae. More
SITE COORDINATES	SITE LOG SUBMISSION
Coordinates of the EPN stations in the different realizations of the International Reference System (ITRS) and European Terrestrial Reference System (ETRS89), The most recent set of coordinates includes all EPN stations included in the EPN from Defore Jan. 2000. More	EPN site logs have to be submitted to this web tool which will parse the log install it in the EPN CB data base if the format is compliant. Detailed submiss instructions an be found here. More inst
	A CONTRACTOR AND A

RTCM SC -104

Differential GNSS Standards

- ursprünglich 1983 entwickelter Standard für die DGPS-Positionierung (Genauigkeitsziel 5m)
- Version 2.0, 1990, im Kern GPS-Codekorrekturen
- Version 2.1, 1994, beinhaltet erstmals RTK Phasenbeobachtungen (nur GPS – proprietäre Message erlaubt FKPs)
- Version 2.2, 1998, inkludiert GLONASS
- Version 2.3, 2001, viele neue Messages, (z.B kombinierte Nutzung GNSS und of Loran-C) und Reduktion der Menge der Übertragungsdaten
- Versionen 3.0, 3.1 (2004,2006) zielen in erster Linie auf verbessertes RTK, und definieren ,Network RTK'- Messages

• Version 3.1, Anhänge 1-6 (2008-2012): beinhalten u.a. Koordinatentransformation in nationales Datum, Korrekturraster f. Netzspannungen, SSR –für PPP

Version 3.2 (2013): Multi Signal Messages für Galileo, Beidou, QZSS

Version 3.3 (2016): neue Navigationsmessages, SBAS

		Be	idou Ko	nstellation	I	
Spacecraft Charac	eristics					
A comprehensive colle eoPortal.	ction of technical information wi	th associated references for t	he BeiDou satellites can be obt	ained at the CNSS page of ESA's		
BelDou-2					Vie GN	SS /
Parameter	GEO	IGSO	MEO			
Launch mass	4600 kg	4200 kg			StraLR	A
Dry mass	1000 Kg	1900 Kg	40			
soay size	~1.8 m x ~2.2 m x ~2.5 m	~1.8 m x ~2.2 m x ~2.5 m	~1.8 m x ~2.2 m x ~2.5 m			
Solar array size	2 x 3 x 2.2 m x 1.7 m	2 x 3 x 2.2 m x 1.7 m	2 x 3 x 2.2 m x 1.7 m			+* +*
span width	~1/./ m	~1/./ m	~1/./ m		Atoons	17 17
cross section	~27 m²	~27 m²	~27 m4		Boost Motor	14 14GS
The BeiDou-2 spacecr (LRA) for satellite lase The BeiDou-3 will trans	aft are equipped with broadban ranging. mit legacy B1 signals similar to	d GNSS antennas for the B1, the BeiDou-2 satellites as we	B2, and B3 frequency bands a Il as modernized signals in the I	s well as a laser retroreflector array	BeiDou MEO/IGSO	+y +y _{los}
Quelle: <u>h</u> i	ttp://mgex.ig	gs.org/IGS_I	MGEX_Statu	s_BDS.html	Acque Boot Mar	Communication Antenna
					+y +y _{GS} +x +z +z _{GS}	tx _{os} BeiDou GE

" →	$\dot{a} = \sqrt{\frac{p}{\mu}} \frac{2a}{1 - e^2} \left(e \cdot \sin(v) \cdot R + \frac{p}{r} S \right) $	(6.18a)¶
•	$\dot{\mathbf{e}} = \sqrt{\frac{p}{\mu}} \left[\sin(\mathbf{v}) \cdot \mathbf{R} + (\cos(\mathbf{v}) + \cos(\mathbf{E})) \cdot \mathbf{S} \right] \qquad -$	(6.18b)¶
•	$\dot{i} = \frac{r \cdot \cos(u)}{na^2 \sqrt{1-e^2}} W$	(6.18c)¶
	$\dot{\Omega} = \frac{r \cdot \sin(u)}{na^2 \sqrt{1 - e^2} \cdot \sin(i)} W$	(6.18d)¶
-	$\dot{\omega} = \frac{1}{e} \sqrt{\frac{p}{\mu}} \left[-\cos(v) \cdot \mathbf{R} + \left(1 + \frac{r}{p}\right) \cdot \sin(v) \cdot \mathbf{S} \right] - \cos(i) \cdot \dot{\Omega} $	(6.18e)¶
-+	$\dot{t}_{p} = -\frac{1-e^{2}}{n^{2}ae} \left[\left(\cos(v) - 2e\frac{r}{p} \right) \cdot R - \left(1 + \frac{r}{p} \right) \sin(v) \cdot S \right] - \frac{3}{2a} \left(t - t_{p} \right) \cdot \dot{a} \rightarrow \frac{1}{2a} \left(t - \frac{1}{2a} \right) \cdot \dot{a} + \frac{1}{2a} \left(t - \frac{1}{2a} \right)$	(6.18f)¶
٩		

