

Mapping with UAVs

Enoc Sanz Ablanedo

Universidad de León
Faculty of Minning Engineering
esana@unileon.es

Mostar, 20th october 2017

Definitions Mapping with Drones, terminology Terminology - **Drone**. Military connotations. Favorite word in press for any small aerial vehicle. UAV, "Unmanned Aerial Vehicle". Usual in scientific papers. UAS, "Unmanned Aerial System", Vehicle + Camera. R emotely - RPA(S). Civil and comercial applications. "Remotely Piloted Aircraft System" "Piloted" sounds less dangerous tan "unmanned" Used by the International Civil Aviation Organization P iloted Prefered in Europe A ircraft - Oficial terminology in spanish legislation S ystem Other terminology ROA "Remotely Operated Aircraft" sUAV, "Small UAV". MAV, "Micro Aerial Vehicles" Mapping using UAVs: Opportunities, Limits and Challenges - Mostar - October, 20th - 2017

oing with Drones; Classification		Comparis	
Summary Comparison	\approx		
Maneuverability	✓	×	
Price	✓	×	
Size / Portability	✓	×	
Ease-of-use	✓	×	
Range	×	✓	
Stability	×	~	
Payload Capacity	✓	×	
Safer Recovery from Motor Power Loss	×	✓	
Takeoff / Landing Area Required	✓	×	
Efficiency for Area Mapping	✓	×	

Mapping with Drones; Piloting a RPA

Piloting a multirotor

PILOTING A MULTIROTOR

- · To pilot a Multirotor it's very easy
- All multirotor operations for mapping can be automatized

- A theoretical and practical formation
- · Special medical certificate

PILOTING A PLANE

More challengeing

- Taking-off
- Landing

Mapping with Drones; Piloting a RPA

Piloting a plane

TAKING-OFF OPERATION (PLANES)

Fixed wings need a minimum of lift to start flying, which is only achieved with a certain initial speed with respect to the air. There are several ways to give that first impulse:

"By hand"

Operative, easy and convenient but In aircrafts having Rear Engine could be dangerous

Catapult

Complex and Time Consuming. Pneumatic or rubber-based catapults.

"Bungee"

Not very profesional but it works

Mapping with Drones: **Traditional vs SfM Photogrammetry Planning the Field Work** VARIABLES OF DESIGN AND TIME OF FLIGHT: OVERLAPS Longitudinal **Usual overlaps Sidelap** Images overlap per point Traditional Aerial Photogrammetry 60 % 30 % 2-6 RPA - SfM Photogrammetry 80 % 10x 65 % 20-50 - In traditional photogrammetry, the number of photos is minimized. It requires a camera-intensive stabilization to get perfect zenith photos. In **SfM photogrammetry**: High degree of automation → High number of images allowed → High redundancy: Contributes positively to 3D model reconstruction 1. Increases likelihood of success in aligment of photos 2. Enhances camera auto-calibration 3. Avoid shaded (without points) areas CONS: High overlaps generate very long flights and projects with a large number of photos

Mapping with Drones; Planning the Field Work

Control Points

CONTROL POINTS

Control points are visible elements in photographs of which their precise coordinates are known. They serve to georeference the photogrammetric model.

- Landscape elements (stones, plants, corners, poles)
- "ad hoc" targets → Presignaling

Presignaling has to be done before flight, which is difficult with conventional photogrammetry, but easy with photogrammetry with UAV images.

Advantages:

- The visibility of the control is guaranteed
- Flat signaling elements are used
- Once the flight is done, it is not necessary to return to the field

Recomendations:

- High reflectivity materials such as white plastics
- Round or square targets
- Large size, around 10-15GSD side or diameter

Mapping with Drones; Planning the Field Work

Quality Evaluation

GROUND CONTROL POINTS

- The more control, the better accuracy
- The points must be homogeneously distributed throughout the entire area
- When few points are available most should be on the **periphery** of work, but some must also be at the **center** of the survey

QUALITY CONTROL

- The quality must be measured at independent **checkpoints**, not at control points
 The maximum accuracy to be expected is:
- - * Planimetry, GSD
 - * Vertical, GSD * 3

Mapping using UAVs: Opportunities, Limits and Challenges - Mostar - October, 20th - 2017

" Utilización de UAV en la Gestión de Los Recursos Mineros de Castilla y León" **Minning Activity Control by Regional Goverment** Los Santos Fuenterrobles Mina Santa Lucía "La Pastora" Carbón 1 253 Alto Bierzo y Alto Bierzo II León Carbón 612 Cortas de Barruecopardo Salamanca Metálica 344 San Pedro de Trones - Sotillo León Pizarra 467 San Pedro de Trones - Armadilla Pizarra 466 San Pedro de Trones - Arcas León Pizarra 1 092 Gran Corta de Fabero e Inglesa 1 141 TOTAL 5.643 Mapping using UAVs: Opportunities, Limits and Challenges - Mostar - October, 20th - 2017

Project: "Estudio de los niveles de severidad por chancro del castaño en el noroeste de España"

Chancro del Castaño is a fungal disease whose most characteristic symptom is the presence of chancres on the trunk, branches or shoots

Mapping using UAVs: Opportunities, Limits and Challenges - Mostar – October, 20th - 2017

Project: "Estimación de pérdida de suelo tras un incendio utilizando fotogrametría con imágenes UAV"

AIM: Measure soil erosion after a forest fire

Mapping using UAVs: Opportunities, Limits and Challenges - Mostar – October, 20th - 2017

- It is neither too expensive nor difficult
- Many research opportunities open up.

Enoc Sanz Ablanedo Universidad de León Faculty of Minning Engineering esana@unileon.es

Mostar, october 20th 2017

10m DTM

0.5m DTM

